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S U M M A R Y
We investigate the spatial coherence of underwater ambient noise using a yearlong time-series
measured off Ascension Island. Qualitative agreement with observed cross-correlations is
achieved using a simple range-dependent model, constrained by earlier, active tomographic
studies in the area. In particular, the model correctly predicts the existence of two weakly
dispersive normal modes in the microseism frequency range, with the group speed of one
of the normal modes being smaller than the sound speed in water. The agreement justifies
our interpretation of the peaks of the measured cross-correlation function of ambient noise
as modal arrivals, with dispersion that is sensitive to crustal velocity structure. Our observa-
tions are consistent with Scholte to Moho head wave coupled propagation, with double mode
conversion occurring due to the bathymetric variations between receivers. We thus demon-
strate the feasibility of interrogating crustal properties using noise interferometry of moored
hydrophone data at ranges in excess of 120 km.

Key words: Interferometry; Interface waves; Theoretical seismology; Wave propagation;
Acoustic properties; Oceanic hotspots and intraplate volcanism.

1 I N T RO D U C T I O N

Wavefields generated by spatially distributed random sources are
known to remain partially coherent at points separated by dis-
tances that are large compared to the wavelength, with the two-
point cross-correlation function of the random wavefields approx-
imating the Green’s function, which describes deterministic wave
propagation between the two observation points (Lobkis & Weaver
2001; Snieder 2004; Roux et al. 2004; Wapenaar 2004; Godin 2006;
Gouédard et al. 2008). Cross-correlation functions of pressure fluc-
tuations in the ocean have been investigated in the 0.5–30 mHz
band, where the correlations characterize deep-water infragravity
waves and their sources (Webb 1986; Godin et al. 2014b), and at
acoustic frequencies above 1 Hz, where geoacoustic parameters of
the seafloor (Brown et al. 2014), spatial (Godin et al. 2010) and tem-
poral (Woolfe et al. 2015) variations of the sound speed in water
and ocean current velocity (Godin et al. 2014a) have been retrieved
from noise cross-correlations.

Here, we study one of the most energetic parts of the ambient
noise spectrum, the microseism band between 0.1 and 1 Hz, and
investigate what information about the ocean and the seafloor can

be retrieved from the cross-correlations of pressure fluctuations.
This effort is motivated, in part, by successful applications of wave
interferometry to the microseism-band seismic noise recorded by
seismometers located on land (Sabra et al. 2005; Shapiro et al.
2005; Gerstoft et al. 2006; Bensen et al. 2007; Brooks et al. 2009)
and on the seafloor (Harmon et al. 2007; Yao et al. 2011; Takeo
et al. 2014; Tian et al. 2013; Zha et al. 2014). Using methodology
developed by the seismic community for extracting fundamental and
higher mode Rayleigh wave arrivals (Yao et al. 2011) from ambient
noise, we obtain robust dispersion measurements from long-range
correlations in the microseism band for the first time using moored
hydrophone data.

This study is based on a yearlong time-series of underwater ambi-
ent noise measured during 2011 off Ascension Island in the Central
Atlantic. The Comprehensive Nuclear-Test-Ban Treaty Organiza-
tion (CTBTO) maintains a global network of hydrophones for the
passive monitoring of global nuclear testing as part of the Inter-
national Monitoring System (IMS). In addition to their primary
mission, IMS hydrophone data have been previously used to char-
acterize the ocean and ambient noise coherence at acoustic frequen-
cies (Sabra et al. 2013; Evers et al. 2014; Evers & Snellen 2015;
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Figure 1. (a) Ascension Island CTBTO arrays with red line connecting elements N1 and S1. S1 element coordinates are 8.9412S, 14.480W, and N1 is located
at 7.8457S, 14.480W. (b) Noise power spectra from 2011 January and (c) daily cross-correlation functions between stations N1 and S1 over year 2011, showing
seasonal variation in amplitudes.

Woolfe et al. 2015). The hydrophone station at Ascension consists
of two triangular arrays spaced 123 km apart along a line oriented
roughly NE-SW (Fig. 1a). The array element spacing is 2 km, and
the hydrophones are moored within the Sound Fixing And Ranging
(SOFAR) channel at about 850 m depth, where data are contin-
uously recorded at a sample frequency of 250 sps. Noise spectra
from all Ascension elements show a prominent secondary micro-
seism peak centred at 5 s period (Fig. 1b), and southern elements
(S1–S3) exhibit higher amplitudes than their northern counterparts
(N1–N3) in shorter periods of the microseism band, from 2 to 3.3 s.

2 N O I S E C O R R E L AT I O N I N T H E
M I C RO S E I S M B A N D

To estimate Green’s functions from the noise data, we follow closely
the method of Yao et al. (2011). Data are windowed into tapered
60 min segments, demeaned and detrended. Spectral whitening is
applied before one-bit normalization, to suppress the influence of
energetic transient signals. The pre-processed windows are then
bandpass filtered in four period ranges (1–4, 3–6, 5–8 s and 7–
11 s) and cross-correlated in the time domain. The resulting cross-

correlation functions are filtered again in the same bands to mitigate
the non-linear effects of one-bit normalization before they are av-
eraged to yield the estimated daily and yearly interarray Green’s
functions.

Our correlation functions exhibit prominent temporal variation
in amplitudes over year 2011 (Fig. 1c), with the greatest signal
energy generally occurring during the Northern Hemisphere win-
ter from January to March. These variations are consistent with
the expected mechanisms of secondary microseism noise genera-
tion by non-linear wave interaction in the north Atlantic, where a
strong source region has been identified to the south of Greenland
(Stehly et al. 2006; Kedar et al. 2008; Tian & Ritzwoller 2015). De-
spite these amplitude variations, the arrival times of the dominant
peaks remain stationary in time. Once the approximate Green’s
functions have been determined, we use frequency–time analysis
(FTAN; Dziewonski & Hales 1972; Bensen et al. 2007) to esti-
mate group velocity dispersion from the spectrogram of the yearly
average cross-correlation function (Fig. 2).

We observe two primary modes that are weakly dispersive but
have very distinct group speeds. Of these two dominant arrivals,
one propagates at a group speed of ∼1 km s−1, slower than the
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Figure 2. (a) Yearly average cross-correlation function for station path N1–
S1, filtered in the microseism band (2–10 s). (b) Spectrogram showing
period-dependent group velocity (U) and power spectral density (PSD) of
symmeterized cross-correlation function. FTAN measurements presented in
Fig. 4 were obtained from the separate positive and negative lag spectrograms
(not shown).

∼1.5 km s−1 average speed of sound in water and the other mode
propagates faster than the speed of sound in water at ∼3 km s−1.
Additionally, we observe what appears to be a lower energy signal
with a group speed of 1.5 km s−1 that is close to the average sound
speed in the water column and does not exhibit strong dispersion
(Fig. 2b).

The difference between the dispersion curves retrieved from pos-
itive and negative time delays (Fig. 2b) provides an estimate of
accuracy of our dispersion curve retrieval from the noise cross-
correlations. Our forward and reverse measurements differ by
∼100 m s−1 for the fundamental mode and ∼80 m s−1 for the
first overtone.

3 R A N G E - D E P E N D E N T D I S P E R S I O N
M O D E L L I N G

Bathymetry, and therefore the propagation conditions for seismoa-
coustic waves, vary strongly along the propagation path (Fig. 3a).
This is made evident by the strong variation in higher mode cut-off
periods along the N1–S1 path (Fig. 3b) and by comparison of dis-
persion curves that are modeled for various ocean depths between
the stations (Figs 3b and c).

(a)

(b)

(c)

Figure 3. (a) Bathymetric profile between stations N1 and S1 (triangles),
with crosses showing locations of mode 1 cut-offs at 4, 5.5, 7 and 8.5 s.
(b) Group dispersion curves for first two modes computed using a subset
of locations along the N1–S1 path. Curves are labeled with the water depth
of each model and the mode number (0 or 1). Note the variation in mode 1
cut-off period with water depth. (c) Phase dispersion curves corresponding
to the models shown in (b).

To model seismoacoustic wave propagation, we employ the adi-
abatic approximation (Brekhovskikh & Godin 1999) and disregard
horizontal refraction. In this approximation, the modal phase and
traveltime in the horizontally inhomogeneous waveguide are ob-
tained, respectively, by integration of the accumulated phase and
traveltime from a series of 1-D dispersion curves modeled us-
ing the bathymetric variations along the N1–S1 station path (see
Appendix A).

Our bathymetric model is a hybrid of satellite altimetry (Smith
& Sandwell 1997) and multibeam sonar data where available. The
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Figure 4. Representative P-velocity (vp), S-velocity (vs) and density models for a single node on the N1–S1 path. Our P-velocity model is adapted from the
tomography results of Evangelidis et al. (2004).

latter was provided by CTBTO. Water depths increase over the first
50 km to the southwest of N1 from 1 to ∼3 km, then generally
remain constant for much of the central portion over the abyssal
plain, until decreasing again to ∼2 km on the flank of the seamount
to which the southern hydrophones are moored.

We use a compressional velocity (vp) model for the flank of
Ascension Island based on the P-wave tomography of Evangelidis
et al. (2004). In this model, vp increases from 3 km s−1 at the seafloor
to greater than 8 km s−1 at 10 km depth (typical of oceanic upper
mantle). Shear velocities (vs) in the crust were estimated from the
vp model using a vp/vs ratio of 1.78, which we chose based on
trial values within the range vp/vs = 1.74 ± 0.09 reported by Moc-
quet et al. (1989) for Atlantic oceanic crust younger than 50 Ma.
We then estimate density from vp using the empirical relation of
Carlson & Raskin (1984). Beneath the ocean and crustal layers is
a half-space with shear velocity of 4.2 km s−1 and compressional
velocity of 8.0 km s−1, based on the Moho speed from Evange-
lidis et al. (2004). The solid Earth properties are assumed to have
the same dependence on the depth below seafloor at every point
along the propagation path. Fig. 4 shows model vp, vs and den-
sity profiles for one water depth (3 km) along the N1–S1 path. We
show group velocity sensitivity kernels computed for this model
in Fig. 5. Our sensitivity kernels illustrate that mode 1 is gener-

ally sensitive to deeper structure than mode 0, and both modes’
sensitivity to vs extends to greater depths than their sensitivity
to vp.

We calculate dispersion at 176 nodes along the interarray path us-
ing the CPS330 software package of Herrmann & Ammon (2004).
The software yields fundamental and higher mode group and phase
velocity dispersion curves at each node, in a period range span-
ning 2–10 s. The resulting suite of dispersion curves was then path-
integrated at each period to produce a dispersion curve for the entire
propagation path between stations N1 and S1. In calculating disper-
sion curves in the range-dependent waveguide, the phase and group
speeds of the first mode are formally set to equal the shear velocity
in the half-space when the cut-off frequency of the mode is higher
than the wave frequency. The physical meaning of this assumption
is discussed below. Our modelling results are shown in Fig. 6. While
we did not perform an inversion in this study, the path-integrated
dispersion we obtain generally agrees with our observations. Vari-
ous terms have historically been used to describe guided waves that
propagate within a model of a fluid layer over an elastic half-space,
including ‘Stoneley waves’ (Ewing et al. 1957), ‘pseudo-Rayleigh
waves’ (Scholte 1949; Roever et al. 1959), ‘Rayleigh waves’
(Harmon et al. 2007), ‘Rayleigh–Scholte waves’ (Yao et al. 2011)
and ‘Scholte waves’ (Cagniard 1962; Bromirski et al. 2013). In the
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Figure 5. Group velocity sensitivity kernels computed for the models shown in Fig. 4, at periods of 4 and 7 s. Partial derivatives of group velocity cg with
respect to shear velocity vs and compressional velocity vp are shown as a function of depth below seafloor (BSF). The Moho is represented by the blue reference
line at 6 km BSF.

strict sense, Scholte waves are surface waves that exist at the plane
interface between homogeneous fluid and solid half-spaces (Roever
et al. 1959; Cagniard 1962; Brekhovskikh & Godin 1998). Here,
we follow (Essen et al. 1998; Park et al. 2005; Kugler et al. 2007;
Vanneste et al. 2011; Soloway et al. 2015) and use the term ‘Scholte
waves’ more broadly to designate those normal modes in the fluid–
solid waveguide which are strongly affected by fluid parameters and
the shear rigidity of the ocean bottom.

We interpret the slower arrival (to which we refer as mode 0) as
the fundamental mode of Scholte waves (Cagniard 1962). Unlike
Scholte waves in an ocean with a constant depth, our modelling
predicts weak dispersion on the N1–S1 path, in agreement with the
observations (Figs 2b and 6). To understand this result, note that,
in the 2-D adiabatic approximation, the effective group slowness of
a normal mode is a path average of the local (i.e. calculated for a
given, constant ocean depth) group slownesses. In our environmen-
tal model, only ocean depth changes along the propagation path,
and the path average is a (weighted) average over ocean depths.
Averaging over depth is similar to averaging over frequency (as
illustrated by a dispersion equation for a simplified problem in Ap-
pendix B), which suppresses the strong dispersion of local normal
modes.

At shortest periods, the faster arrival can be interpreted as first
Scholte wave overtone (mode 1). However, in most of the frequency
band we analyse, mode 1 encounters a cut-off at one or more (typ-
ically two) points along the N1–S1 path (Fig. 3a). We therefore
interpret this fast arrival as a converted, or hybrid, wave, which
propagates as a refracted, vertically polarized shear wave along the
Moho on those parts of the N1–S1 path where the first mode is
cut-off. In our environmental model we have a fluid layer, which
overlays a stratified solid layer on a homogeneous solid half-space.
At cut-off, the phase and group speeds of a normal mode equal the
shear wave speed in the half-space, and theory (Brekhovskikh &
Godin 1999) predicts that the bulk of the normal energy continues
propagating past the cut-off in the same direction (as opposed to
being reflected) as the head wave with the shear wave speed.

4 D I S C U S S I O N A N D C O N C LU S I O N S

Results of modelling the frequency-dependent traveltimes for the
hybrid wave are in agreement with observations (Fig. 6). Typically,
we have doubly converted waves. The theory of coupling between
the discrete (normal modes) and continuous (body waves) spectra of
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Figure 6. Measured dispersion of the cross-correlation function of stations
N1–S1 (symbols), shown with prediction from path-integrating 1-D disper-
sion curves computed for a range-dependent model based on the results of
Evangelidis et al. (2004) (solid lines).

the wavefield is reviewed in Brekhovskikh & Godin (1999), includ-
ing double conversion in the case of an acoustic (fluid) waveguide.
To our knowledge, this is the first observation of doubly converted
seismoacoustic waves in the ocean. As seen in Fig. 6, the first
overtone data are fit well with our simple range-dependent propa-
gation model, while the fundamental mode is fit more poorly, with
our model exhibiting a systematic offset of +200 m s−1 from the
observations. This may indicate either a higher sensitivity of the
fundamental mode to cross-range environmental gradients, the ef-
fects of which we have neglected, or a need to refine the vp and vs

models used in our calculations.
The sensitivity of the converted wave’s traveltime to shear speed

in the upper mantle is of practical significance. Because of the rich
frequency content of ambient noise, noise interferometry can serve
as a powerful tool to reveal new propagation regimes in 2-D and
3-D inhomogeneous ocean.

We have shown that noise interferometry in the microseism band
is practical using data from hydrophones tethered ∼1 km above
the seafloor, at interarray distances exceeding 120 km. We interpret
the two major peaks in the Green’s functions to be Scholte modes,
exhibiting dispersion that is sensitive to the 2-D acoustic–elastic
properties of the ocean and underlying crust along the propagation
path. We find that path-integrated dispersion from a model incor-
porating prior tomographic results and the along-track bathymetry
agrees generally with our observations. Our modelling indicates
that the fundamental mode exhibits strong dependence on the vp

and thickness of the water layer, while the higher mode is sensitive
to velocity structure at greater relative depths in the crust and upper
mantle (Fig. 5).

Observed power spectra of pressure fluctuations in the water col-
umn have a pronounced peak in the microseism frequency band.
Long (∼1 km or longer) wavelengths of seismoacoustic waves in
this band make evaluation of the noise cross-correlations insensitive
to tidally induced motions of IMS moorings, which are expected
to result in horizontal displacements of hydrophones in the tens of
metres. The results presented here, which we obtained using hy-
drophones on long moorings, indicate that hydrophone-equipped
autonomous underwater vehicles and floats can provide useful data
for interferometric studies of the seafloor in the microseism fre-

quency band. We have demonstrated the feasibility of inverting the
dispersion of Ascension hydrophone correlations for uppermost-
mantle shear velocities. Our results imply that crustal structure
can be investigated using passive data from hydrophones instead
of ocean bottom seismometers, assuming the hydrophones are de-
ployed where similar coupling conditions to those at Ascension
exist. Ascension Island’s tectonic origin remains in debate. The
volcanic edifice is presumed to be either the surface expression of
a hotspot, or the result of melt produced by the interaction of the
Ascension fracture zone to the north with the nearby Mid-Atlantic
Ridge to the east (Gaherty & Dunn 2007). It is conceivable that fu-
ture work on the data investigated here can contribute to discerning
between competing models of Ascension’s genesis, and a greater
overall understanding of ridge–hotspot interaction processes.
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A P P E N D I X A : G U I D E D P RO PA G AT I O N O F S E I S M OA C O U S T I C WAV E S I N A
H O R I Z O N TA L LY I N H O M O G E N E O U S O C E A N

Consider linear seismoacoustic waves in an ocean where physical parameters, including the ocean depth, vary gradually in the horizontal
plane. The spatial scale of the horizontal variations is assumed to be large compared to the wavelength. The ocean is stationary in the absence
of waves. Let seismoacoustic waves be generated by a monochromatic point source of mass with the amplitude a0 of the volume injection
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rate. Within the water column, acoustic pressure p (i.e. wave-induced perturbation in the pressure at a given point) satisfies the reduced wave
equation (Brekhovskikh & Godin 1999)

∇ ·
(∇ p

ρ

)
+ ω2 p

ρc2
= iωa0δ(R − R1) (A1)

where ω is the wave frequency, ρ and c are the water density and sound speed, δ(·) is the Dirac delta function, R = (x, y, z) and R1 = (x1, y1, z1)
is the location of the wave source.

In a horizontally invariant waveguide, the seismoacoustic wavefield can be represented as a superposition of normal modes, which propagate
horizontally without coupling. Generally, horizontal inhomogeneities in a waveguide lead to energy exchange (coupling) between the modes.
In the case of gradual, slow variation of the waveguide parameters with horizontal coordinates, wave propagation can be asymptotically
described in the adiabatic approximation (Weinberg & Burridge 1974; Brekhovskikh & Godin 1999), where each mode adjusts to the varying
propagation conditions without coupling to the other normal modes. Conditions of validity of the adiabatic approximation are discussed, for
example, in Brekhovskikh & Godin (1999). These conditions are typically met in the ocean in the frequency range considered in the main
text. In the adiabatic approximation, the acoustic pressure in a normal mode excited in a horizontally inhomogeneous waveguide by the point
source in eq. (A1) is (Weinberg & Burridge 1974; Brekhovskikh & Godin 1999)

p(R, ω) = iωa0 P(z; r)P(z1; r1)G(r, r1) (A2)

where r = (x, y) and r1 = (x1, y1) are 2-D horizontal vectors and the function G satisfies the 2-D Helmholtz equation

∂2 G(r, r1)/∂ r2 + k2(r)G(r, r1) = δ(r − r1) (A3)

with radiation conditions at |r − r1| → ∞. Here, P(z; r) and k(r) are the mode shape function (i.e. the vertical profile of pressure) and
the mode wavenumber in an auxiliary, horizontally homogeneous waveguide having the same depth, seabed properties and sound speed and
density profiles that the original, horizontally inhomogeneous waveguide has at the given x and y.

The function G can be viewed as the Green’s function of the 2-D Helmholtz equation (eq. A3), that is, the field due to a unit point source in
the 2-D problem in the horizontal plane. It satisfies the reciprocity relation G(R, R1) = G(R1, R). An asymptotic solution for G(R, R1) can
be found in the ray, or geometric optics, approximation (Weinberg & Burridge 1974; Brekhovskikh & Godin 1999). In this approximation,
normal modes propagate from the wave source along horizontal trajectories (rays). The position of a point r(l, φ) on a horizontal ray and the
mode wave vector k(l, φ) = (kx , ky) at this point are found from the differential ray equations

d r/dl = k/k, dk/dl = ∂k/∂ r, (A4)

where l and φ are the arc length along the ray and the azimuthal angle giving the direction of the ray at the source. For a generic dependence
of the ocean depth on horizontal coordinates, eqs (A4) have to be integrated numerically. In the ray approximation,

G(r, r1) =
[

8π

(
kx

(
∂y

∂ϕ

)
l

− ky

(
∂x

∂ϕ

)
l

)]−1/2

exp

(
i	(r, r1) − 3iπ

4

)
, 	(r, r1) =

∫ r

r1

kdl. (A5)

Integration in eq. (A5) is along an eigenray, that is, the horizontal ray that connects points r1 and r. In a horizontally homogeneous
ocean, ∂k/∂ r = 0, horizontal rays are straight lines, x = x1 + lcos ϕ, y = y1 + lsin ϕ and eq. (A5) simplifies to G(r, r1) = (8πk|r −
r1|)−1/2 exp (ik|r − r1| − 3iπ/4), which coincides with the dominant term of the asymptotic expansion at k|r − r1| → ∞ of the exact
solution G(r, r1) = −0.25i H (1)

0 (k|r − r1|) of eq. (A3).
When ∇k has a constant direction and a normal mode propagates in this direction, that is, (r − r1) · ∇k ≡ 0, horizontal rays (eq. A4) are

again straight lines that connect points r1 and r . In underwater acoustics, waveguides with this type of horizontal inhomogeneity are referred
to as range-dependent ones. Choosing the Ox coordinate axis in the direction from r1 to r , from eq. (A5) one finds

	(r, r1) =
∫ x

x1

kdx . (A6)

Note that geometry of the horizontal rays is independent of wave frequency in this case. Eq. (A6) for the mode phase is often applied to
generic horizontally inhomogeneous waveguides and provides then an approximation to the true mode phase. In agreement with Fermat’s
principle, the difference between the true and approximate mode phase is of second order in the cross-range gradients of k, that is, in ∂k/∂y.
For a discussion of conditions of validity of the approximation (eq. A6) in generic horizontally inhomogeneous waveguides, see Godin (2002).

For the mode traveltime t(r, r1) in a range-dependent waveguide, from eq. (A6) we find

t(r, r1) = ∂	(r, r1)

∂ω
=

∫ x

x1

dx

cg
(A7)

where cg = (∂ω/∂k)x is the group velocity of the mode in a corresponding horizontally homogeneous waveguide. Eq. (A7) has been used
in the main text to calculate modal traveltimes and the modeled effective group speeds U shown in Fig. 4. Eq. (A7) shows that the effective
group slowness, U−1 = t(r, r1)/|r − r1|, in a range-dependent waveguide is an average of the modal slowness c−1

g over range. When changes
in k are due to changes in the ocean depth H and the depth varies steadily with range, the group slowness becomes a weighted average of c−1

g

over depth:

1

U
= 1

H (x) − H (x1)

∫ H (x)

H (x1)
α

d H

cg
, α = H (x) − H (x1)

(x − x1)d H/dx
. (A8)
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As discussed in Appendix A, eq. (A8) helps to understand the striking difference in the frequency dependencies of U (see Fig. 4 in the main
text) and cg (see Fig. 3b in the main text).

A P P E N D I X B : D I S P E R S I O N E Q UAT I O N O F S C H O LT E WAV E S I N A B E N C H M A R K
P RO B L E M

Consider a homogeneous water layer of depth H overlying a homogeneous solid half-space. The ratio of densities of the solid and the fluid is
M. Wave frequency is ω; sound speed in water, and speeds of compressional and shear waves in the bottom are c, vp and vs, respectively.

The dispersion equation for such a waveguide is obtained by requiring that a monochromatic wave with a horizontal wavenumber k satisfies
corresponding reduced wave equations in the fluid and the solid, conditions at infinity (i.e. only evanescent waves are allowed in the solid
half-space), the boundary condition of zero acoustic pressure at the free upper surface of the water layer and the boundary condition at the
fluid–solid interface. Three boundary conditions should be met at the fluid–solid interface: the normal (vertical) displacement is continuous,
the normal (vertical) component of the traction vector is continuous and tangential (horizontal) components of the traction vector equal zero
(Brekhovskikh & Godin 1998).

The resulting dispersion equation (Ewing et al. 1957) can be written as follows:

tan
(
ωH

√
c−2 − v−2

)
√

c−2 − v−2
= M(vs/v)4√

v−2 − v−2
p

⎡
⎣4

√√√√(
1 − v2

v2
p

)(
1 − v2

v2
s

)
−

(
2 − v2

v2
s

)2
⎤
⎦ . (B1)

Here, v ≡ ω/k is the phase speed of the normal mode. In all normal modes, o ≤ v ≤ vs. Therefore, the right-hand side of eq. (B1) is always
real. When v < c, it is convenient to write the left-hand side of eq. (B1) as (v−2 − c−2)−1/2 tanh(ωH

√
v−2 − c−2). Note that the expression

in the square brackets in the right-hand side of eq. (B1) is the same as appears in the dispersion equation for the Rayleigh surface wave in a
solid half-space with a free boundary (Ewing et al. 1957; Brekhovskikh & Godin 1998). It is positive when v < cR and negative when v >cR,
where cR is the Rayleigh surface wave speed in a solid half-space with a free boundary.

Every continuous, real-valued solution v(ω) of the dispersion eq. (B1) determines a dispersion curve of a particular normal mode. Surface
waves supported by a fluid–solid interface and, more generally, normal modes in a fluid layer over a solid half-space are often referred to as
Scholte–Stoneley or Scholte waves (Ewing et al. 1957; Brekhovskikh & Godin 1998).

In four special cases: (i) M → 0, (ii) M → +∞, (iii) H → 0 and (iv) cs → 0, the dispersion eq. (B1) reduces to well-known elementary
dispersion equations (Ewing et al. 1957; Brekhovskikh & Godin 1998) for (i) a fluid layer with two free boundaries, (ii) a fluid layer with
one free and one rigid boundary, (iii) Rayleigh surface wave in a solid half-space with a free boundary and (iv) the Pekeris waveguide, that
is, a waveguide with a homogeneous fluid bottom. (In the case of a fluid bottom, there are no shear waves to carry energy to infinity, and the
condition 0 ≤ v ≤ vs no longer applies. It is replaced by 0 ≤ v ≤ vp.)

One can easily solve eq. (B1) explicitly for the product ωH as a function of v and parameters M, vp, vs and c:

ω0 H = 1√
v−2 − c−2

arc tanh

⎛
⎝ M(vs/v)4

√
v−2 − c−2√

v−2 − v−2
p

×
⎡
⎣4

√√√√(
1 − v2

v2
p

)(
1 − v2

v2
s

)
−

(
2 − v2

v2
s

)2
⎤
⎦

⎞
⎠ , 0 < v ≤ min (c, cR); (B2)

ω0 H = 1√
c−2 − v−2

arctan

⎛
⎝ M(vs/v)4

√
c−2 − v−2√

v−2 − v−2
p

×
⎡
⎣4

√√√√(
1 − v2

v2
p

)(
1 − v2

v2
s

)
−

(
2 − v2

v2
s

)2
⎤
⎦

⎞
⎠ , c ≤ v ≤ cR ; (B3)

ωn H = 1√
c−2 − v−2

⎛
⎝πn − arctan

⎛
⎝ M(vs/v)4

√
c−2 − v−2√

v−2 − v−2
p

×
⎡
⎣(

2 − v2

v2
s

)2

− 4

√√√√(
1 − v2

v2
p

) (
1 − v2

v2
s

)⎤
⎦

⎞
⎠

⎞
⎠ , c ≤ v ≤ vs, (B4)

where n = 1, 2, . . . . Eqs (B2) and (B3) give the frequency of the fundamental mode with the phase speed v. The branch of its dispersion
curve, which is described by eq. (B2), always exist; eq. (B3) describes an additional branch that exists provided c < cR. The phase speed of
the fundamental mode satisfies the inequality v < cR.

Eq. (B4) gives the frequencies of the higher order modes with the phase speed v. Only the fundamental mode (eq. B2) exists when c ≥ vs.
When c < vs, the nth mode exists at frequencies ω ≥ �n where the cut-off frequency

�n = 1

H
√

c−2 − v−2
s

⎛
⎝πn − arctan

⎛
⎝ M

√
c−2 − v−2

s√
v−2

s − v−2
p

⎞
⎠

⎞
⎠ . (B5)

Note that the cut-off frequency increases with decreasing ocean depth.
An explicit equation for the modal group speed

cg = ∂ω

∂k
=

(
1 − ω

v

∂v

∂ω

)−1

v (B6)

is readily obtained by differentiating both sides of eq. (B1) with respect to ω. The equation for cg is cumbersome and will not be reproduced
here. Fig. B1 shows group and phase dispersion curves modeled for the benchmark problem using the software of Herrmann & Ammon
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(a)

(b)

Figure B1. (a) Group dispersion curves for first two modes computed for the benchmark problem with water layer thicknesses of 1–3 km. Curves are labeled
with the water depth of each model and the mode number (0 or 1). (b) Phase dispersion curves corresponding to the models shown in (a). Half-space
compressional and shear velocities are 7.79 and 4.5 km s−1, respectively, and the density ratio of the fluid layer to the half-space layer is M = 3.0.

(2004). We calculate dispersion for a model with density ratio M = 3.0, c = 1.5 km s−1, vp = 7.79 km s−1 and vs = 4.5 km s−1. Dependencies
of the modal phase and group velocities on wave period 2π/ω in the benchmark problem, which follow from eq. (B1), are qualitatively similar
to those shown in Figs 3b and c in the main text.

It follows from eqs (B1) and (B6) that the modal phase and group velocities are functions of the product ωH when the parameters M,
c, vp and vs are kept constant. (v and cg retain this property also in other waveguides as long as the acoustic impedance (Brekhovskikh &
Godin 1998) of the boundary z = H is a function of v and is independent of frequency.) For any function of ωH, averaging over frequency is
equivalent to averaging over ocean depth. Indeed, the average over frequency

1

ω2 − ω1

∫ ω2

ω1

f (ωH )dω = 1

ω2 H − ω1 H

∫ ω2 H

ω1 H
f (a)da (B7)

equals the average over depth

1

H2 − H1

∫ H2

H1

f (ωH )d H = 1

ωH2 − ωH1

∫ ωH2

ωH1

f (a)da (B8)

as long as ω1H = ωH1 and ω2H = ωH2.
As discussed in Appendix A, mode traveltime in a waveguide with range-dependent bathymetry is proportional to an average of c−1

g over
ocean depth H. In the benchmark problem we consider, averaging over H at fixed ω is equivalent to averaging over ω at fixed H and results in
a suppression of the frequency dependence of the modal traveltime.
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